Temozolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats.

نویسندگان

  • A B Heimberger
  • G E Archer
  • R E McLendon
  • C Hulette
  • A H Friedman
  • H S Friedman
  • D D Bigner
  • J H Sampson
چکیده

Intracerebral microinfusion (ICM) is an innovative technique of delivering therapeutic agents throughout large portions of the brain that circumvents the blood-brain barrier, minimizes systemic toxicity, and provides a homogeneous distribution of the infused agent. Temozolomide is a novel methylating agent with proven efficacy against malignant gliomas (MGs) after systemic administration but with dose-limiting myelotoxicity. Because MGs rarely metastasize, systemic drug delivery is unnecessary. Therefore, we evaluated the efficacy and toxicity of ICM with temozolomide in an athymic rat model of human MGs. Treatment of rats by ICM with temozolomide 3 days after intracerebral challenge with D54 human MG xenograft increased median survival by 128% compared with rats treated by ICM with saline, by 113% compared with rats treated with i.p. saline, and by 100% compared with rats treated with i.p. temozolomide (P < 0.001). Delay of treatment until 9 days after tumor challenge still resulted in a 23% increase in median survival in rats treated by ICM of temozolomide compared with rats treated with i.p. temozolomide. In addition, overall, 21.7% of rats treated by ICM with temozolomide survived for > 100 days without clinical or histological evidence of tumor. The dose of temozolomide delivered by ICM in this study was limited only by drug solubility, and no neurological or systemic toxicity could be attributed to ICM with temozolomide. Therefore, ICM of temozolomide may offer significant advantages in the treatment of MGs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model.

Targeting active angiogenesis, which is a major hallmark of malignant gliomas, is a potential therapeutic approach. For effective inhibition of tumor-induced neovascularization, antiangiogenic compounds have to be delivered in sufficient quantities over a sustained period of time. The short biological half-life of many antiangiogenic inhibitors and the impaired intratumoral blood flow create lo...

متن کامل

Efficacy of intracerebral microinfusion of trastuzumab in an athymic rat model of intracerebral metastatic breast cancer.

PURPOSE The monoclonal antibody (MAb) trastuzumab (Herceptin) effectively treats HER2-overexpressing extracerebral breast neoplasms. Delivery of such macromolecule therapeutic agents to intracerebral metastases, however, is limited by the tight junctions characteristic of the cerebral vasculature. Direct intracerebral microinfusion (ICM) is a technique that bypasses this blood-brain barrier and...

متن کامل

Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter.

Currently, the most efficacious treatment for malignant gliomas is temozolomide; however, gliomas expressing the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) are resistant to this drug. Strong clinical evidence shows that gliomas with methylation and subsequent silencing of the MGMT promoter are sensitive to temozolomide. Based on the fact that adenoviral proteins directly ...

متن کامل

Treatment of neoplastic meningitis with intrathecal temozolomide.

Neoplastic meningitis (NM) results from leptomeningeal dissemination of cancers arising within the central nervous system or metastasizing to the leptomeninges from systemic neoplasms. The inability to produce therapeutic drug levels intrathecally (i.t.) with systemic administration and the minimal efficacy of chemotherapeutic agents currently available for direct i.t. use limit therapy. Temozo...

متن کامل

Selective opening of the blood-tumor barrier by a nitric oxide donor and long-term survival in rats with C6 gliomas.

OBJECT The response of brain tumors to systemic chemotherapy is limited by the blood-tumor barrier (BTB). Nitric oxide (NO) has been implicated in the regulation of vascular permeability and blood flow. The authors evaluated the effects of exogenous NO, which was released from a short-acting NO donor (Proli/NO), and those of NO metabolites on the capillary permeability of tumors and normal brai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2000